翻訳と辞書
Words near each other
・ Crusio
・ Crusio (ice cream parlor)
・ Crusis
・ Crusiseta
・ Crusius
・ Crusnes
・ Crusoe
・ Crusoe (film)
・ Crusoe (TV series)
・ Crusoe Cave
・ Crusoe Secondary College
・ Crust
・ Crust (album)
・ Crust (baking)
・ Crust (band)
Crust (geology)
・ Crust punk
・ Crustacean
・ Crustacean cardioactive peptide
・ Crustacean larvae
・ Crustacean neurohormone family
・ Crustacean Records
・ Crustaceana
・ Crustaceans of Montana
・ Crustaceomorpha
・ Crustacyanin
・ Crustacés et Coquillages
・ Crustal recycling
・ Crustastun
・ Crustation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Crust (geology) : ウィキペディア英語版
Crust (geology)

In geology, the crust is the outermost solid shell of a rocky planet or natural satellite, which is chemically distinct from the underlying mantle. The crusts of Earth, the Moon, Mercury, Venus, Mars, Io, and other planetary bodies have been generated largely by igneous processes, and these crusts are richer in incompatible elements than their respective mantles.
==Earth's crust==

The crust of the Earth is composed of a great variety of igneous, metamorphic, and sedimentary rocks. The crust is underlain by the mantle. The upper part of the mantle is composed mostly of peridotite, a rock denser than rocks common in the overlying crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity. The crust occupies less than 1% of Earth's volume.
The oceanic crust of the sheet is different from its continental crust.
*The oceanic crust is to thick〔(Structure of the Earth ). The Encyclopedia of Earth. March 3, 2010〕 and is composed primarily of basalt, diabase, and gabbro.
*The continental crust is typically from to thick and is mostly composed of slightly less dense rocks than those of the oceanic crust. Some of these less dense rocks, such as granite, are common in the continental crust but rare to absent in the oceanic crust.
Both the continental and oceanic crust "float" on the mantle. Because the continental crust is thicker, it extends both to greater elevations and greater depth than the oceanic crust. The slightly lower density of felsic continental rock compared to basaltic oceanic rock contributes to the higher relative elevation of the top of the continental crust. As the top of the continental crust reaches elevations higher than that of the oceanic, water runs off the continents and collects above the oceanic crust. Because of the change in velocity of seismic waves it is believed that beneath continents at a certain depth continental crust (sial) becomes close in its physical properties to oceanic crust (sima), and the transition zone is referred to as the Conrad discontinuity.
The temperature of the crust increases with depth, reaching values typically in the range from about to at the boundary with the underlying mantle. The crust and underlying relatively rigid uppermost mantle make up the lithosphere. Because of convection in the underlying plastic (although non-molten) upper mantle and asthenosphere, the lithosphere is broken into tectonic plates that move. The temperature increases by as much as 30 °C (about 50 °F) for every kilometer locally in the upper part of the crust, but the geothermal gradient is smaller in deeper crust.〔(Earth ). Channel4.com. Retrieved on 2011-12-13.〕
Partly by analogy to what is known about the Moon, Earth is considered to have differentiated from an aggregate of planetesimals into its core, mantle and crust within about 100 million years of the formation of the planet, 4.6 billion years ago. The primordial crust was very thin and was probably recycled by much more vigorous plate tectonics and destroyed by significant asteroid impacts, which were much more common in the early stages of the solar system.
Earth has probably always had some form of basaltic crust, but the age of the oldest oceanic crust today is only about 200 million years. In contrast, the bulk of the continental crust is much older. The oldest continental crustal rocks on Earth have ages in the range from about 3.7 to 4.28 billion years 〔P. J. Patchett and S. D. Samson, 2003, Ages and Growth of the Continental Crust from Radiogenic Isotopes. In The Crust (ed. R. L. Rudnick) volume 3, pp. 321–348 of Treatise on Geochemistry (eds. H. D. Holland and K. K. Turekian), Elsevier-Pergamon, Oxford ISBN 0-08-043751-6〕 and have been found in the Narryer Gneiss Terrane in Western Australia, in the Acasta Gneiss in the Northwest Territories on the Canadian Shield, and on other cratonic regions such as those on the Fennoscandian Shield. Some zircon with age as great as 4.3 billion years has been found in the Narryer Gneiss Terrane.
The average age of the current Earth's continental crust has been estimated to be about 2.0 billion years.〔A. I. S. Kemp and C. J. Hawkesworth, 2003, Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. In The Crust (ed. R. L. Rudnick) volume 3, pp. 349–410 of Treatise on Geochemistry (eds. H. D. Holland and K. K. Turekian), Elsevier-Pergamon, Oxford ISBN 0-08-043751-6〕 Most crustal rocks formed before 2.5 billion years ago are located in cratons. Such old continental crust and the underlying mantle asthenosphere are less dense than elsewhere in Earth and so are not readily destroyed by subduction. Formation of new continental crust is linked to periods of intense orogeny; these periods coincide with the formation of the supercontinents such as Rodinia, Pangaea and Gondwana. The crust forms in part by aggregation of island arcs including granite and metamorphic fold belts, and it is preserved in part by depletion of the underlying mantle to form buoyant lithospheric mantle.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Crust (geology)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.